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Uncertainty in compartmental models for hazardous
materials — a case study
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Abstract

Performing uncertainty analysis on compartmental models is the main topic of this article.
Elements of the methodology developed during a joint CECrUSNRC accident consequence code
uncertainty analysis are introduced. The uncertainty is quantified using structured expert judg-
ment. Experts are queried about physically observable quantities. Many code input parameters of
the accident consequence codes are not physically observable but are used to predict observable
quantities. Therefore, a probabilistic inversion technique was developed which ‘transfers’ the
uncertainty from the physically observable quantities to the code input parameters. The probabilis-
tic inversion technique is illustrated using the compartmental model of systemic retention of Sr in
the human body. The article is concluded with a discussion on capturing uncertainty via
compartmental models. q 2000 Elsevier Science B.V. All rights reserved.
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entropy

1. Introduction

The ‘hazardousness’ of a given material is typically expressed in terms of size of
response in humans per unit exposure. Choosing the proper hazard dimensions for a
given substance is hardly a trivial task, but even when these dimensions have been
selected, substantial uncertainty may remain. Direct experimental data on humans is
usually scarce, and indirect data, e.g. involving animal experiments, are often difficult to
interpret. Therefore, in environmental studies, the dose response models associated with
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hazardous materials are often a dominant contributor to uncertainty in the predicted
results.

As decision makers learn to appreciate the substantial uncertainties in environmental
transport or compartmental models, they typically request a quantification of these
uncertainties. This in turn requires quantification of the uncertainties over input parame-
ters in the dose response models of the hazardous substances.

This article discusses an element of the methodology for quantifying uncertainty in
environmental models for hazardous substances developed in a joint research project

Ž .with the Commission of the European Communities CEC and the United States
Ž . Ž w x.Nuclear Regulatory Commission USNRC see Refs. 3–8 . The method aims at

quantifying the uncertainty in accident consequence codes for commercial nuclear power
plants using structured expert judgment. One compartmental model for one substance,
namely the acyclic compartmental model describing systemic retention of Strontium in
the human body, is taken to illustrate the methodology.

Section 2 briefly describes relevant features of the joint research project. Section 3
describes the acyclic compartmental model for systemic retention of Strontium. Section
4 discusses how the uncertainty has been quantified and Section 5 discusses probabilistic
inversion. Section 6 discusses uncertainty modeling from a general perspective.

2. Joint CECrrrrrUSNRC project

To estimate the risks and consequences of hypothetical accidents with commercial
nuclear power plants, the CEC and USNRC separately developed Probabilistic Accident

Ž .Consequence Codes PACCs , COSYMA and MACCS, respectively. Since many
modeling parameters in the codes are uncertain, these organizations decided jointly to
establish a methodology and provide a base of information in order to perform
uncertainty analysis on the calculations of PACCs. Available data are sparse and, as
both organizations wanted to allow for a diversity of viewpoints, formal expert judgment
elicitation was used to quantify the uncertainties. The goal of elicitating expert judg-
ments is to encode degrees of belief into probability distributions.

ŽResearch institutes in Europe TU Delft, National Radiological Protection Board,
. ŽEnergiecentrum Nederland, Forschungszentrum Karlsruhe and in the USA SANDIA
.National Laboratories, U. of Hawaii at Hilo, U. of Arizona formulated the objectives

w x Ž .for this joint effort. The broad objectives are stated in Ref. 5 : 1 to formulate a
generic, state-of-the-art methodology for uncertainty estimation which is capable of

Ž .finding broad acceptance. 2 To apply the methodology to estimate the uncertainties
associated with the predictions of PACCs designed for assessing consequences of

Ž .accidents at commercial nuclear power plants. 3 To better quantify and obtain more
valid estimates of the uncertainties associated with the PACCs, thus enabling more
informed and better judgments to be made in the areas of risk comparison and

Ž .acceptability and therefore to help set priorities for future research. 4 To systematically
develop credible and traceable uncertainty distributions for the respective code input
variables using formal expert judgment elicitation process.
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Expert panels were formed for the following areas of the PACCs: atmospheric
dispersion, deposition, external doses, foodchain, early health effects, late health effects
and internal dosimetry. The case study discussed in this article is taken from the
uncertainty analysis on the internal dosimetry module of the codes.

3. Compartmental model for Sr

In this project, systemic retention of Sr in the human body is described by the acyclic
compartmental model shown in Fig. 1.

The transfer coefficient k , represents the proportion of material in compartment ii j

moved to compartment j in a small time interval. The compartmental model determines
a set of first order linear differential equations which, with the appropriate conditions,
fully specify the movement of material between the compartments.

Although the transfer coefficients cannot be measured directly, the following relation-
ships are assumed to hold on the basis of physical considerations.

Ž .1 The transfer coefficients from compartment i to Bladder are modeled as:

k sU :F) k 1Ž .i6 i5

� 4with ig 1, . . . ,4 and U:F the Urine-to-Faeces ratio for Sr. The U:F-ratio for Sr was
set to 3.3.

Ž .2 It was assumed that the transfer coefficient from Blood to Trabecular Bone, k is12

fully correlated to the transfer coefficient from Blood to Cortical Bone, k in the13

following manner:

k s tc) k 2Ž .12 13

where tc is the Trabecular-to-Cortical factor, tc and k are considered uncertain.13

Fig. 1. Acyclic compartmental model for the systemic retention of Sr.
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Ž . Ž .Based on the compartmental model shown in Fig. 1, Eqs. 1 and 2 and initial
conditions 1 the equation describing the proportion of the amount of Sr at time t, for

Ž .example, in the Skeleton Trabecular Bone and Cortical Bone and Liver is:

m sm t qm t qm tŽ . Ž . Ž .SkeletonqLiver 2 3 4

ey4 .3k 25 t yeyŽ k13Ž1qtc .qk14q4 .3k15 .

s tc k13 k 1q tc qk q4.3k y4.3kŽ .13 14 15 25

ey4 .3k 35 t yeyŽ k13Ž1qtc .qk14q4 .3k15 .

qk13 k 1q tc qk q4.3k y4.3kŽ .13 14 15 35

ey4 .3k45 t yeyŽ k13Ž1qtc.qk14q4 .3k15 .

qk . 3Ž .14 k 1q tc qk q4.3k y4.3kŽ .13 14 15 45

Besides calculating the amount of Sr retained in any compartment at any time, the
Ž .compartmental model is used in calculating the dose per unit intake dose coefficient of

any compartment. These dose coefficients are used in further calculations of health
effects.

From this point on we will refer to the acyclic compartmental model describing
systemic retention of Sr in the human body, as shown in Fig. 1, as the Sr-model.

4. How to quantify uncertainties?

The Sr-model in Fig. 1 is typical of models used by international bodies charged with
setting standards for radiation exposure for the general public and for radiological

w xworkers 9 .
We have seen that the Sr-model can be used to compute dose coefficients. Compart-

Ž .mental models, like the Sr-model make strong assumptions, in particular: a These and
Ž .only these compartments are involved in the transfer of material. b The rates of

transfer from a source-compartment to a sink-compartment are proportional to the
amount of material in the source compartment, and independent of all other physical
variables.

The model itself is not derived from underlying physical laws, nor can it be verified
by direct observation, most of the transfer coefficients cannot be measured by experi-
ment.

The uncertainty analysis team is tasked with quantifying the uncertainty attending the
use of such models in a traceable and defensible way. If these models were derived from
accepted physical laws, and if the transfer coefficients could be measured, subject to
measurement error, then the quantification of uncertainty would be straightforward. The
transfer coefficients would be regarded as drawn from a sampling distribution reflecting

1 Ž . Ž .Initial conditions for systemic retention of Sr are m ts0 s1 and m ts0 s0, where is2, . . . ,6.1 i
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measurement error, and the uncertainty attending the use of such models would be
obtained by propagating the sampling distribution through the model.

The above remarks make it clear that this straightforward method of quantifying
uncertainty is not available for compartmental models like the Sr-model. The method by
which these models are chosen and quantified cannot form the basis for a quantification
of uncertainty. Indeed, the uncertainty analysis team did not encounter any generic
method for choosing and subsequently quantifying such models. The type of arguments
leading to a choice of a given model are peculiar to the species in question. Once a
compartmental model is chosen, the method for determining the values of the transfer
coefficients is also highly specific to the problem at hand and involves a great deal of
qualitative reasoning.

The absence of direct physical measurements of transfer coefficients means that the
uncertainty cannot be determined by objective statistical methods, rather the relevant
uncertainty takes the form of subjective uncertainty of experts. The uncertainty must be
quantified using structured expert judgment. At the same time, the lack of validation for
the models themselves entails that we cannot simply ask experts ‘‘what is your
uncertainty in transfer coefficient k of the Sr-model’’ as the uncertainty analysis team13

may not make any assumption regarding the model the experts should use.

4.1. Target Õariables and elicitation Õariables

At the inception of the joint project, the project team adopted the position that experts
would be queried only about the results of possible measurements. Physically feasible
measurement set-ups would be specified, values of all variables would be specified to
the degree that they are read by the PACCs. Values of variables which are not read into
the PACCs are left unspecified, and uncertainty over these values must be folded into
the uncertainty over the measurement outcomes by the experts. Experts are then asked to
state their uncertainty distributions over the possible outcomes of the measurements. By
configuring the expert elicitations in this way, the experts’ uncertainty is conditionalized
on the knowledge that the user of the PACC possess during any given application.

The uncertain code input parameters for which an uncertainty distribution has to be
determined will be called target Õariables. The quantities for which the experts have to
provide assessments will be called elicitation Õariables. The target variables in the

Ž .Sr-model are k , k , k , k , k , k , tc . From the discussion earlier, it is clear that13 14 15 25 35 45

they cannot serve as elicitation variables. Elicitation variables were formulated on the
amount of Sr retained in certain regions of the human body at certain times, after being
administered intravenously as a single injection. The regions of the human body for
which the experts were queried are the SkeletonqLiver and the Skeleton as a
percentage of SkeletonqLiver. The elicitation questions are listed in Appendix A.
Experts were asked to consider two populations: adults and 5-year-old children. In this
article, we focus on adults only. For all elicitation variables, the experts were asked to
state the 5%, 50% and 95% quantiles of their subjective distribution.

The elicitation variables cover important contributions to uncertainty in calculating
doses from radionuclides reaching blood. Factors omitted in the Sr-model that might
also contribute significantly to uncertainties are the location of sensitive cells in Bone
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Table 1
Quantile information of aggregated experts based on equal weights for the two types of elicitation questions
for adults

Ž .Question Quantile % 1 day 1 week 1 month 1 year 10 years 50 years

SkelqLiver 5 0.17 0.12 0.1 6.74ey2 1.8ey2 1.1ey3
50 0.32 0.23 0.21 0.14 6.5ey2 1.8ey2
95 0.58 0.48 0.35 0.24 0.14 8.9ey2

SkelrSkelqLiver 5 0.85 0.82 0.85 0.77 0.68 0.64
50 0.96 0.96 0.98 0.99 0.99 0.99
95 0.998 0.998 0.999 0.999 0.999 0.999

and absorbed fractions for alpha- and beta-emitting Bone seekers, and tissue mass and
geometric considerations. Experts are encouraged to take these factors into account in
their uncertainty distributions.

4.2. Aggregated expert results

Once the expert uncertainty distributions are obtained, these uncertainties must be
aggregated to form one uncertainty distribution, and this distribution must be used to
derive an uncertainty distribution over the transfer coefficients of the Sr-model. The
method of aggregation is not the focus of this article, for more detailed information see

w xRef. 2 and references therein. For the data analysed here, a simple arithmetic average
of the experts’ uncertainty distributions has been used. Aggregated expert results for the
elicitation variables are given in Table 1.

w xIn looking at the written rationales of the experts 6 , it became clear that every expert
Ž .used the ICRP 67 model for Sr comparable to Fig. 1 in determining their median

values. They stated that Sr is the best understood element of the Alkaline Earth
Elements. Furthermore, they all consider the retention in the Liver to be negligible
compared to the retention in the Skeleton.

Section 5 explains how the aggregated expert results are used to determine an
uncertainty distribution on the target variables for the Sr-model.

5. Probabilistic inversion

Suppose we had a distribution over the transfer coefficients of the Sr-model. We
could then push this distribution through the compartmental model and obtain a
distribution over, for example the retention at various times in the Skeleton and Liver

Ž .using Eq. 3 . The problem at hand involves reversing this procedure: we have quantiles
of distributions over retention in certain compartments at certain times, namely the

Ž .aggregated expert uncertainty distributions as in Table 1 ; and we seek a distribution
over the transfer coefficients which, when pushed through the compartmental model,
yields quantiles over retentions agreeing with those from the experts. Hence, our
problem is one of probabilistic inversion: we must invert the compartmental model so as
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to ‘pull back’ the distribution over the retention in certain compartments at certain times
onto the transfer coefficients of the model.

Let H represent a distribution over retention in given compartments at given times.
Ž .Let F represent a distribution over transfer coefficients in the Sr-model, and let G F

represent the distribution over retention in the given compartments at the given times,
obtained by pushing the distribution F through the model G. Then our problem may be

Ž .represented as: Find F such that G F ;H, where ‘; ’ means ‘has the same distribu-
y1Ž .tion as’, or equivalently, F;G H .

y1Ž .Note that a probabilistic inverse G H may not exist, and if it exists it will be in
general not unique. Therefore, we must have a method of selecting a preferred
distribution in case of non-uniqueness and a method of choosing a best fitting distribu-
tion in case of non-existence.

Note also that probabilistic inversion is not restricted to expert judgment only.
Distributions obtained from a series of experiments under similar conditions can also be
used as input in the probabilistic inversion technique.

5.1. PREJUDICE

The acronym PREJUDICE stands for PRocessing Expert JUDgment Into Code
paramEters. We will illustrate the different steps using the following compartmental
model, see Fig. 2.

Suppose we want to perform an uncertainty analysis on the compartmental model
shown in Fig. 2. The equations describing the retention in the different compartments
are:

m t seyŽ kABqk AC . t 4Ž . Ž .A

kAB yŽk qk . tAB ACm t s 1ye 5Ž . Ž . Ž .B k qkAB AC

kAC yŽk qk . tAB ACm t s 1ye . 6Ž . Ž . Ž .C k qkAB AC

Ž .In performing the uncertainty analysis, a joint distribution over k , k is required,AB AC
Ž .i.e., k , k are the target variables. From the discussion above, it was concludedAB AC

that the transfer coefficients cannot serve as elicitation variables. Therefore, the elicita-
tion variables are on the retention of material in compartments B and C at certain times

Ž .t is1, . . . ,n after a unit deposit in compartment A, represented by Y and Zi i i

Fig. 2. Compartmental model.



( )B.C.P. Kraan, R.M. CookerJournal of Hazardous Materials 71 2000 253–268260

Fig. 3. Propagation of samples.

Ž .is1, . . . ,n . Figs. 3–5 depict the probabilistic inversion for ns1. In determining the
distribution over the target variables all elicitation variables are used.

Step 1 Support of Distribution: In this step, the support of the distribution over the target
variables is determined.

For each i, is1, . . . ,n, an elicited quantile is chosen for Y and Z , say y and z ,i i i, j i,ki i

� 4where j , k g 1, 2, 3 . The set:i i

ss y , z , . . . , y , z 7Ž . Ž .1, j 1,k n , j n ,k1 1 n n

is called a scenario. Let S be the set of all scenarios. Next, each scenario is tested for
Ž Ž . Ž ..physically admissibility; in this example m t , m t are increasing functions of t.B C

Therefore, sgS is admissible only if y -y where is1, . . . ,ny1, andi, j iq1, ji iq1

similarly for z. Let SU denote the set of admissible scenarios.

Fig. 4. Observable hypercubes.
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Fig. 5. ‘Pullback’-distribution.

U Ž s s .For each scenario sgS , estimates k , k for the target variables are deter-AB AC

mined, such that the quadratic difference between model output and scenario s is
minimized.

2sn k s sAB y k qk t sŽ .AB AC i1ye yyŽ .Ž .Ý is sž /k qkAB ACis1

2sn k s sAC y k qk t sŽ .AB AC iq 1ye yz 8Ž . Ž .Ž .Ý is sž /k qkAB ACi s 1

Ž .For each target variable, intervals are determined which are 1 mutually exclusive and
Ž . Ž s s .2 whose union covers all estimates. In this way, each estimate k , k falls in oneAB AC

hypercube of the target variable space. A number of samples are taken uniformly from
Ž . Ž .each such hypercube and propagated through the model using Eqs. 5 and 6 for

ts t , . . . ,t . This generates a set of points in the observable space. The samples taken in1 n

the target variable space will be the support of the distribution over the target variables
Ž U U .and will be indicated by I. See Fig. 3 for a graphical illustration, the pair k , k isAB AC

sampled uniformly from the rectangle B =B and mapped into the observable pair1,5 2,2
Ž U Ž . U Ž ..m t , m t .B 1 C 1

Step 2 Determination of Distribution: Note that the axis of the observable space, in
which the propagated samples are defined, can be associated with elicitation variables Yi

and Z , is1, . . . ,n. 5%, 50% and 95% quantiles of the distributions of each elicitationi

variables are available.

Briefly, a joint distribution over the propagated samples in the observable space is
determined, which has maximum entropy with respect to the uniform background
measure and such that for each elicitation variable Y and Z , the quantile information ofi i

the marginal distribution complies with the quantile information of the distribution of Yi
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and Z .Each propagated sample in the observable space thus receives a probability andi

each point in I is assigned the probability associated with its image in the observable
space. In this way, a distribution over I is determined. Details are given in Section 5.2.

5.2. Determination of distribution

The number of distributions over the propagated samples which will satisfy the
constraints on the quantile information on Y and Z , as described in Step 2, may bei i

large. From this set of distributions, we want to select one distribution: the distribution
w xwhich has maximum entropy with respect to the uniform background measure 10,12 .

Determining the joint distribution which has maximum entropy with respect to the
uniform background measure can be formulated as a constrained Non-Linear Program-

Ž .ming NLP problem.
To describe the NLP problem, we introduce a set of hypercubes in the observable

space. For elicitation variable Y , we distinguish four intervals:i

x x xy`, y , y , y , y , y , y ,`Ž Ž Ž Ž .i ,5% i ,5% i ,50% i ,50% i ,95% i ,95%

In the same way we distinguish four intervals for elicitation variable Z . Taking thei

product of all such intervals, for all elicitation variables, we generate a set of ‘‘observa-
� 4ble hypercubes’’, indexed as i . . . i , where i g 1, 2, 3, 4 . Thus, i s3 means that1 2 n j j

Ž xwe consider interval y , y for elicitation variable Y . For two elicitationj,50% j,95% j

variables, Y and Z , the observable hypercubes are shown in Fig. 4.1 1

The NLP problem may be formulated as follows:
4 4 4

maximizey PPP c p ln p qC 9Ž .Ý Ý Ý i . . . i i . . . i i . . . i1 2 n 1 2 n 1 2 n
i s1i s1 i s11 2 2n

4 4 4 4

PPP c p s 0.05 . . . PPP c p s 0.051 i . . . i 1 i . . . i i . . . i 1 i . . . i 1Ý Ý Ý Ý2 2 n 2 2 n 1 2 ny 1 1 2 ny 1

i s1 i i s1 i s12 2ns1 1 2 ny1

4 4 4 4

PPP c p s 0.45 . . . PPP c p s 0.452 i . . . i 2 i . . . i i . . . i 2 i . . . i 2Ý Ý Ý Ý2 2 n 2 2 n 1 2 ny 1 1 2 ny 1

i s1 i i s1 i s12 2ns1 1 2 ny1

4 4 4 4

PPP c p s 0.45 . . . PPP c p s 0.453 i . . . i 3 i . . . i i . . . i 3 i . . . i 3Ý Ý Ý Ý2 2 n 2 2 n 1 2 ny 1 1 2 ny 1

i s1 i i s1 i s12 2s1 1 2 ny1

4 4 4 4

PPP c p s 0.05 . . . PPP c p s 0.054 i . . . i 4 i . . . i i . . . i 4 i . . . i 4Ý Ý Ý Ý2 2 n 2 2 n 1 2 ny 1 1 2 ny 1

i s1 i i s1 i s12 2s1 1 2 ny1

p G 0i . . . i1 2 n

where c represents the number of propagated samples falling in observablei . . . i1 2 n

Ž Ž ..hypercube i . . . i , and C is the constant ln. NLP problem Eq. 9 is solved for1 2 n

p . The p represent the probability of each sample in observable hypercubei . . . i i . . . i1 2 n 1 2 n

Ž .i . . . i . It is easy to see that Eq. 9 is a convex optimization problem. The interior1 2n
w xpoint solver for large-scale convex problems 1 avoids problems with p s0 andi . . . i1 2 n

gave excellent performance. In Fig. 5, the highlighted point receives probability p and3,4
Ž U U .the probability is assigned to the pre-image of this point k , k in the target variableAB AC

space.
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5.3. Dealing with infeasibilities

The above NLP problem may not be feasible. In this case, we reduce the dimension
of the observable space. Still considering the simple model of Fig. 2, with 2n elicitation

2nŽ Ž ..variables, suppose the NLP problem Eq. 9 is infeasible. The idea is to look at ž /2ny1
2nproblems of dimension 2ny1. For each of the problems, Step 1 and Step 2ž /2ny1

are carried out. Because all steps of the solution scheme are carried out for each
problem, the support associated with the different problems will likely be different. Let

2nŽ .N NF denote the number of NLP problems for which a distribution in Stepž /2ny1
2 can be determined. Assuming that N)0, we have obtained N distributions over the
target variables on their specific supports. We are now confronted with the problem of
finding a distribution over the target variables which ‘‘best fits’’ the N distributions. For

w xthe solution of this problem, we refer to Ref. 11 .
If Ns0, we will reduce the dimension of the problem once more, and perform Step

2n1 and Step 2 for problems of dimension 2ny2.ž /2ny1
The details are omitted here; the NLP problem for the Sr-model was feasible.

5.4. Compartmental model for Sr: results

The dimension of the target variable space for the Sr-model is 7 and the dimension of
the observable space is 12. The Sr-model was probabilistically inverted to determine a

Ž .distribution over k , k , k , k , k , k , tc . There were 1269 admissible scenarios13 14 15 25 35 45

and these were used to generate 1,269,000 samples in the target variable space as
described in Step 1. The samples were propagated through the appropriate model
predictors.

Quantile information for the marginal distributions and the rank correlation matrix
among the target variables are given in Tables 2 and 3, respectively.

To determine how well the probabilistic inversion technique performs, the aggregated
expert quantiles in Table 1 are compared to quantiles obtained by ‘‘pushing’’ the
distribution over the target variables through the appropriate model predictors. Thus, we

Ž . Ž Ž .. Žregard m t Eq. 3 , as a function of random variables k , k , k ,SkeletonqLiver i 13 14 15
. Ž .k ,k , k , tc for 1 day, 1 week, 1 month, 1 year, 10 years and 50 years see Table 1 .25 35 45

The columns headed with Agg. Exp. give the aggregated expert assessments, the
columns headed with Pred. give the ‘push-through’ results based on the distribution over
the target variables as determined with PREJUDICE. For performing a large uncertainty

Table 2
Quantile information for the target variables

Ž .Quantile % k k k k k k tc13 14 15 25 35 45

5 6.89ey2 7.7ey4 5.54ey2 1.45ey5 2.63ey5 7.33ey6 0.29
50 2.18ey1 9.57ey4 2.68ey1 2.74ey2 5.48ey5 4.09ey5 2.03
95 6.97ey1 7.25ey2 3.53ey1 1.22ey1 7.41ey2 7.41ey2 2.35
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Table 3
Rank correlations among target variables

1 y0.04 0.42 y0.61 y0.46 y0.45 y0.62k ° ¶13

y0.04 1 y0.45 0.12 y0.27 y0.03 0.04k14

0.42 y0.45 1 y0.20 0.27 0.17 y0.25k15

y0.61 0.12 y0.20 1 y0.85 0.12 0.60k25

y0.46 y0.27 0.27 y0.85 1 0.01 y0.87k35

y0.45 y0.03 0.17 0.12 0.01 1 y0.02k45¢ ßy0.62 0.04 y0.25 0.60 y0.87 y0.02 1tc

analysis, it is often necessary to represent the joint distribution in terms of marginal
distributions and rank correlation coefficients. The columns ‘‘Marg. Rank.’’ give the
‘push-through’ results based on the distribution over the target variables which has
maximum entropy satisfying the marginal distributions and rank correlation matrix given
by PREJUDICE. Note that PREJUDICE fits the aggregated expert results quite well,

Ž . Ž .and that the Marg. Rank. is poor for the 5% quantiles for Skel r SkelqLiver .

6. Uncertainty capture

Physical models like the compartmental model discussed above are traditionally used
with ‘best estimates’ of the transfer coefficients to predict phenomena. When we cannot
infer the models from accepted laws and cannot measure the values of the transfer
coefficients, then the predictions of the models are uncertain. Straightforward use of the
model with ‘best estimates’ does not give any picture of the uncertainty attending model
predictions. We suggest that these models can be legitimately employed to capture
uncertainty. This employment differs in fundamental ways from straightforward predic-
tion.

Capturing uncertainty in observable phenomena via distributions over transfer coeffi-
cients involves:
Ž .i using structured expert judgment to quantify uncertainty on measurable quantities
predicted by the compartmental model.
Ž .ii performing probabilistic inversion to pull this uncertainty back onto the transfer
coefficients of the model.
Ž .iii comparing the uncertainty pushed through the model with the experts’ uncer-
tainty.

Ž .If there is an imperfect fit in step iii , the conclusion is not that the model is wrong;
rather, the conclusion is that we are unable to capture the experts’ uncertainty via a joint
distribution over its model parameters. There may be several reasons for this.

Ž .1 Although experts believe that the model is ‘roughly right’, their uncertainty may
involve departures from the assumptions of the model. Thus, with regard to Fig. 1,
experts may believe recirculation may occur from, for example Cortical Bone to Blood:
under certain circumstances, a portion of material in the Cortical Bone may be
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transferred back to the blood. In this case, the amount transferred to the Cortical Bone in
a unit time would not be proportional to the amount in the blood. It may be impossible
to capture the experts’ uncertainty via a distribution over the transfer coefficients in Fig.
1.

Ž .2 Although the experts each represent their uncertainties via distributions over the
parameters of the ICRP 67 model for Sr, it may be impossible to represent their
combined distribution in this way, taking account of physical constraints. For example,

Ž .suppose each expert believes in the model of Fig. 1 and believes that Eq. 2 ,
Ž .k s tc) k , is correct, but they do not agree on the value of tc. If Eq. 2 is interpreted12 13

Žas a physical constraint with tc a constant i.e. assuming a single value with probability
.one , then it may be impossible to capture the combined expert distribution via a

Ž .distribution over model parameters satisfying Eq. 2 , even though this is possible for
each expert individually.

Ž .3 The mathematical processing may itself impose simplifications which cause a
Ž .discrepancy in step iii . Thus, in Table 4 we see that representing the joint distribution

over transfer coefficients as a maximal entropy distribution under marginal and rank
correlation constraints introduces significant discrepancies.

Ž .Assuming that the fit in step iii is good, the use of models to capture uncertainty
may involve features which are unfamiliar to experts and decision makers alike, and
which deserve special attention.

Ž .1 The combined expert distribution will not, in general, agree with the distribution
of any one expert. Typically, the uncertainty in the distributions obtained by averaging

Table 4
Ž . Ž .Comparison Aggregated Expert result Agg. Exp. vs. PREJUDICE Pred. vs. Marginals and Rank correlation

Ž .Marg. Rank.

Time SkelqLiver SkelrSkelqLiver

Agg. Exp. Pred. Marg. Rank. Agg. Exp. Pred. Marg. Rank.

1 day 5% 0.17 0.17 0.12 0.85 0.85 0.77
50% 0.32 0.32 0.31 0.96 0.96 0.98
95% 0.58 0.58 0.53 0.998 0.998 0.999

1 week 5% 0.12 0.12 0.11 0.82 0.82 0.67
50% 0.23 0.23 0.26 0.96 0.96 0.97
95% 0.48 0.48 0.55 0.998 0.998 0.998

1 month 5% 0.1 0.10 5.8ey2 0.85 0.85 0.58
50% 0.21 0.21 0.2 0.98 0.98 0.96
95% 0.35 0.35 0.49 0.999 0.999 0.999

1 year 5% 6.74ey2 6.74ey2 1.1ey2 0.77 0.77 4.4ey5
50% 0.14 0.14 0.18 0.99 0.99 0.95
95% 0.24 0.24 0.43 0.999 0.999 0.999

10 years 5% 1.8ey2 1.8ey2 4.8ey3 0.68 0.68 0
50% 6.5ey2 6.45ey2 0.11 0.99 0.99 0.95
95% 0.14 0.14 0.25 0.999 0.999 0.999

50 years 5% 1.1ey3 1.1ey3 2.1ey4 0.64 0.64 0
50% 1.8ey2 1.85ey2 1.3ey2 0.99 0.99 0.97
95% 8.9ey2 8.86ey2 7.4ey2 0.999 0.999 0.999
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the uncertainties of several experts will be larger than the uncertainties of each
individual expert.

Ž .2 The distribution of model parameters may involve strong correlations, either
positive or negative, which complicate the ways experts traditionally think about the
models. Thus, experts like to think of transfer coefficients in terms of ‘retention half
times’. In Fig. 1, if we consider the Cortical Bone and ULI compartments in isolation,
then the time at which half of a unit deposit to Cortical Bone is transferred to the ULI is
Ž Ž .. Ž .ln 2 r k and is called the retention half time for Cortical Bone. Similarly,35
Ž Ž .. Ž .ln 2 r k is the retention half time for Trabecular Bone. These expressions suggest25

that k and k have a meaning independent of the model in which they are considered.25 35

This is not the case however as may become glaringly evident when k and k are25 35

assigned distributions as given in Table 2. Note from Table 3 that these variables have a
Ž .strong negative correlation. A ‘‘representative value’’ for k e.g. the median together25

with a ‘‘representative value’’ for k may not yield representative values for simple35
Ž .functions of k , k . Consider the following simple example: X and Y are uniformly25 35

w xdistributed on 0, 2 and completely negative correlated, so that Ys2yX. The median
of X and Y is 1. Hence, the product of the medians is 1, but 1 is also the maximum of
XY; the product of medians is not the median of the product.

Ž .3 If uncertainty over observable phenomena can be captured via a distribution over
model parameters, then this can, in general, be captured in more than one way. In other
words, if the probabilistic inverse of a distribution over observables exists, then it is
generally not unique. Hence, two uncertainty analysts using different search algorithms
and different heuristics might come up with two different distributions over the transfer
coefficients in Fig. 1, both of them adequately reproducing the uncertainty over
observable phenomena.

7. Conclusions

The use of environmental models to capture uncertainty involves mathematical and
conceptual problems. The probabilistic inversion techniques currently available cannot
handle models much larger than that of Fig. 1. Research is in progress to develop new
solution algorithms and new heuristics for dealing with larger models. To date, the
choice of elicitation variables has been driven by heuristics and practical constraints. For
example, elicitation variables must be familiar to the experts and the number of
elicitation variables must remain relatively small. Finally, the use of models to capture
uncertainty rather than to make simple predictions requires experts and decision maker
to think about these models in new and different ways.

In spite of the above-problems, the approach to uncertainty modeling described above
has been broadly successful within the context of the joint CECrUSNRC uncertainty
analysis, and can, in principle, be applied to a wider range of problems.

Appendix A. Elicitation questions

These questions cover important contributions to uncertainty in calculating doses
from radionuclides reaching blood. Factors omitted that might also contribute signifi-
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cantly to uncertainties are the location of sensitive cells in Bone and absorbed fractions
for alpha- and beta-emitting bone-seekers, and tissue mass and geometric considerations.

ŽConsidering the total amount reaching blood as if administered intravenously as a
. Ž .single injection . Percentage retained in Liver and Skeleton BoneqBone marrow , as a

function of time after entry into blood?
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